Affiliation:
1. School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
3. Electric Power Wireless Communication Technology Laboratory, Beijing 102209, China
Abstract
Nowadays, with the increasingly prominent contradiction between environment and development, renewable energy technology has received extensive attention. However, due to natural fluctuation, there are many challenges in safety and stationarity in an electric power system with a large-scale portion of renewable energy. Meanwhile, the conventional electric power system in which the power supply follows the load change paradigm is gradually broken. Thanks to advanced information and communication technology, energy storage technology, and automatic control technology, the power supply, grid, load, and energy storage interactive electric power system regulation paradigm came into being. A virtual power plant (VPP) is a concrete realization of this regulation paradigm. In this paper, based on the characteristics of VPP service requirements, we propose a data-driven method to estimate and predict the network latency. First, we investigate and summarize the characteristics of a VPP participating in various auxiliary services and their demand for communication networks. Second, the practical implementation of a VPP network architecture, which combines the local network and the backhaul network, is presented based on a secure access gateway and VPP monitoring and scheduling platform for flexible resource aggregation and regulation. Then, based on a delay probe, a network latency acquisition method is proposed for a public backhaul network. Finally, a data-driven network latency processing method is proposed to support the VPP’s participation in different communication requirements of auxiliary services.
Funder
Fund for Young Scholars of State Grid Smart Grid Research Institute Co., Ltd.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献