High-Frequency Forecasting of Stock Volatility Based on Model Fusion and a Feature Reconstruction Neural Network

Author:

Shi ZhiweiORCID,Wu Zhifeng,Shi Shuaiwei,Mao Chengzhi,Wang Yingqiao,Zhao Laiqi

Abstract

Stock volatility is an important measure of financial risk. Due to the complexity and variability of financial markets, time series forecasting in the financial field is extremely challenging. This paper proposes a “model fusion learning algorithm” and a “feature reconstruction neural network” to forecast the future 10 min volatility of 112 stocks from different industries over the past three years. The results show that the model in this paper has higher fitting accuracy and generalization ability than the traditional model (CART, MLR, LightGBM, etc.). This study found that the “model fusion learning algorithm” can be well applied to financial data modeling; the “feature reconstruction neural network” can well-model data sets with fewer features.

Funder

Tianjin Research Innovation Project for Postgraduate Students

National Natural Science Foundation of China

National Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling and Forecasting volatility in International financial markets;International Journal of Research in Business and Social Science (2147- 4478);2023-03-25

2. Research on stock price prediction from a data fusion perspective;Data Science in Finance and Economics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3