A Novel Algorithm for Automated Human Single-Lead ECG Pre-Annotation and Beat-to-Beat Separation for Heartbeat Classification Using Autoencoders

Author:

Benhamida AbdallahORCID,Kozlovszky Miklos

Abstract

An electrocardiogram (ECG) is used to check the electrical activity of the heart over a limited short-term or long-term period. Short-term observations are often used in hospitals or clinics, whereas long-term observations (often called continuous or stream-like ECG observations) are used to monitor the heart’s electrical activity on a daily basis and during different daily activities, such as sleeping, running, eating, etc. ECG can reflect the normal sinus rhythm as well as different heart problems, which might vary from Premature Atrial Contractions (PAC) and Premature Ventricular Contractions (PVC), to Sinus Arrest and many other problems. In order to perform such monitoring on a daily basis, it is very important to implement automated solutions that perform most of the work of the daily ECG analysis and could alert the doctors in case of any problem, and could even detect the type of the problem in order for the doctors to have an immediate report about the patient’s health status. This paper aims to provide a workflow for abnormal ECG signals detection from different sources of digitized ECG signals, including ambulatory devices. We propose an algorithm for ECG pre-annotation and beat-to-beat separation for heartbeat classification using Autoencoders. The algorithm includes the training of different models for different types of abnormal ECG signals, and has shown promising results for normal sinus rhythm and PVC compared to other solutions. This solution is proposed for no-noise and noisy signals as well.

Funder

Eötvös Loránd Research Network Secretariat

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3