Extraction of the Complex Relative Permittivity from the Characteristic Impedance of Transmission Line by Resolving Discontinuities

Author:

Moukanda Mbango FranckORCID,Bouesse Ghislain Fraidy,Ndagijimana Fabien

Abstract

This paper describes a material complex permittivity extraction technique based on four measurements of two identical coaxial (circular and rectangular) lines, distinguished by their lengths. The paper presents a combination of propagation parameters through mixing the eigenvalue principle and the lines’ characteristic impedance to improve the extraction techniques of intrinsic material parameters. However, the accuracy of some material parameters is insufficient, as the discontinuities at the feedline–ideal line interface are not adequately solved. In these cases, a new formulation of the complex effective permittivity is suggested, associating the propagation constant and the characteristic impedance for a homogeneous structure. Next, uncertain errors that can negatively impact the method are removed from the mathematical expression. Then, a characteristic impedance expression is developed in the second stage to improve the mathematical formulation. Finally, a correction coefficient in tune with reality and a polynomial function to amend the behavior of some of the curves are provided. The approach’s novelty lies in its ability to extract and correct the characteristic impedances despite discontinuity impedances at the ideal line–feedline interface. Several materials are tested with circular and/or rectangular coaxial fixtures to confirm the performance of the suggested method. The test cells are homogeneous, full, and long, at 80 mm and 100 mm (50 mm for the circular one). Determining the propagation constant from the eigenvalue of the wave cascading matrix (WCM) is a fundamental step in this method. Knowing the propagation constant helps to automatically compute a correction coefficient that depends on the fixture and the material being tested. Experimental validation is performed in the frequency range from some MHz to 10 GHz, 13.5 GHz, and 20 GHz, according to the tested material. Both test fixtures are filled with the sample material, with a vacuum considered as a reference parameter. The method’s accuracy is better than 5% on the relative permittivity parameter throughout the frequency range. All the tested samples are compared with the results using the filled two-transmission-line technique (FTTL), using only the eigenvalue determination principle. The trapper cells are coaxially circular and rectangular.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference47 articles.

1. Fast and Robust Characterization of Lossy Dielectric Slabs Using Rectangular Waveguides;Sergei;IEEE Trans. Microw. Theory Technol.,2022

2. Aydinalp, C., Joof, S., Dilman, I., Akduman, I., and Yilmaz, T. (2022). Characterization of Open-Ended Coaxial Probe Sensing Depth with Respect to Aperture Size for Dielectric Property Measurement of Heterogeneous Tissues. Sensors, 22.

3. A Dual-Band Non-destructive Dielectric Measurement Sensor Based on Complementary Split-Ring Resonator;Wang;Front. Phys.,2021

4. Non-Resonant Permittivity Measurement Methods;Severo;J. Microwaves Optoelectron. Electromagn. Appl.,2017

5. Sawant, S.S., Yao, Z., Jambunathan, R., and Nonaka, A. (2022). Characterization of Transmission Lines in Microelectronics Circuits using the ARTEMIS Solver. J. Comput. Phys.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3