Abstract
Heterogeneous cluster-based multi/many-core systems (e.g., ARM big.LITTLE, supporting dynamic voltage and frequency scaling (DVFS) at cluster level and dynamic power management (DPM) at core level) have attracted much attention to optimize energy on modern embedded systems. For concurrently executing applications on such a platform, this paper aims to study how to appropriately apply the three system configurations (mapping, DVFS, and DPM) to reduce both dynamic and static energy. To this end, this paper first formulates the dependence of the three system configurations on heterogeneous cluster-based systems as a 0–1 integrated linear programming (ILP) model, taking into account run-time configuration overheads (e.g., costs of DPM mode switching and task migration). Then, with the 0–1 ILP model, different run-time strategies (e.g., considering the three configurations in fully separate, partially separate, and holistic manners) are compared based on a hierarchical management structure and design-time prepared data. Experimental case studies offer insights into the effectiveness of different management strategies on different platform sizes (e.g., #cluster × #core, 2 × 4, 2 × 8, 4 × 4, 4 × 8), in terms of application migration, energy efficiency, resource efficiency, and complexity.
Funder
Science and Technology Program of Guangdong Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献