Abstract
With the increasing demand for earth observation in various fields, remote satellites play an important role in ground information assurance. Apparently, the effective scheduling and utilization of multi-satellite resources determine the quality and efficiency of information acquisition. In this paper, focusing on the problem of centralized multi-satellite scheduling, we establish a mathematical model of satellite scheduling with complex constraints of load and platform operation. We also propose a real-coding Population Incremental Based Learning (PBIL) algorithm to solve the multi-satellite scheduling problem. The real-coding format can greatly shorten the coding length compared to the traditional PBIL algorithm with binary coding so that the computational efficiency is improved. Additionally, we design a value probability matrix, correction coefficient and mutation operator to guide better evolution and avoid early convergence. Finally, we take some numerical examples to verify the real-coding PBIL algorithm for multi-satellite scheduling. The performance of the algorithm is analyzed by comparing it with binary-coding PBIL and the Genetic Algorithm (GA). Additionally, the influence of key parameters on algorithm performance, such as probability correction coefficient, is also analyzed.
Funder
CETC Aerospace Information Application Technology Key Laboratory Open Fund Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献