Abstract
Marine permanent magnet synchronous propulsion motors have problems, such as low reliability and difficult maintenance in the traditional control. In this paper, a sensorless control system for a permanent magnet synchronous motor (PMSM) based on parameter identification is proposed. According to the mathematical model of the motor in the two-phase synchronous rotating coordinate system, a model reference adaptation system (MRAS) is used to estimate the rotor speed and rotor position of the motor. Because the MRAS is highly dependent on the motor parameters, and they will change with the environment, working state, etc., the Adaline neural network is used to identify the motor parameters online, and then the model parameters in the MRAS are corrected. The simulation results show that the combined control system can reduce the estimated error of the rotor speed by about 50% compared with the traditional method, and reduces the rotor position angle estimation error by 96%. It shows that the combined system can accurately estimate the rotational speed and rotor position of the motor, and it has high identification accuracy for the motor parameters.
Funder
The Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献