An Integrated Analysis Framework of Convolutional Neural Network for Embedded Edge Devices

Author:

Lim Seung-Ho,Kang Shin-Hyeok,Ko Byeong-Hyun,Roh Jaewon,Lim Chaemin,Cho Sang-Young

Abstract

Recently, IoT applications using Deep Neural Network (DNN) to embedded edge devices are increasing. Generally, in the case of DNN applications in the IoT system, training is mainly performed in the server and inference operation is performed on the edge device. The embedded edge devices still take a lot of loads in inference operations due to low computing resources, so proper customization of DNN with architectural exploration is required. However, there are few integrated frameworks to facilitate exploration and customization of various DNN models and their operations in embedded edge devices. In this paper, we propose an integrated framework that can explore and customize DNN inference operations of DNN models on embedded edge devices. The framework consists of the GUI interface part, the inference engine part, and the hardware Deep Learning Accelerator (DLA) Virtual Platform (VP) part. Specifically it focuses on Convolutional Neural Network (CNN), and provides integrated interoperability for convolutional neural network models and neural network customization techniques such as quantization and cross-inference functions. In addition, performance estimation is possible by providing hardware DLA VP for embedded edge devices. Those features are provided as web-based GUI interfaces, so users can easily utilize them.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Smart-Log: A Deep-Learning Based Automated Nutrition Monitoring System in the IoT

2. Deep Compression: Compressing Deep Neural Networks with pruning, trained quantization and Huffman coding;Han;arXiv,2015

3. Compressing deep convolutional networks using vector quantization;Gong;arXiv,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3