Reducing Redundant Test Executions in Software Product Line Testing—A Case Study

Author:

Jung PilsuORCID,Kang SungwonORCID,Lee JihyunORCID

Abstract

In the context of software product line (SPL) engineering, test cases can be reused for testing a family of products that share common parts of source code. An approach to test the products of a product family is to exhaustively execute each test case on all the products. However, such an approach would be very inefficient because the common parts of source code will be tested multiple times unnecessarily. To reduce unnecessary repetition of testing, we previously proposed a method to avoid equivalent test executions of a product line in the context of regression testing. However, it turns out that the same approach can be used in a broader context than just regression testing of product families. In this paper, we argue the generality of the method in the sense that it can be used for testing of the first version of a product family as well as regression testing of its subsequent versions. In addition, in this paper, in order to make the method practically usable for users, we propose a process for applying it to SPL testing. We demonstrate the generality of our method and the practical applicability of the proposed process for the method by conducting a case study.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference49 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software product line testing: a systematic literature review;Empirical Software Engineering;2024-09-02

2. An Experimental Evaluation of Path-Based Product Line Integration Testing and Test Coverage Metrics;Applied Sciences;2023-11-25

3. Goal-Oriented Prioritized Non-Functional Testing with Stakeholders' Priorities;2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS);2023-10-25

4. BW-TOPSIS: A Hybrid Method to Evaluate Software Testing Techniques;Journal of Communications Software and Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3