Abstract
The detection result of current light-field salient object detection methods suffers from loss of edge details, which significantly limits the performance of subsequent computer vision tasks. To solve this problem, we propose a novel convolutional neural network to accurately detect salient objects, by digging effective edge information from light-field data. In particular, our method is divided into four steps. Firstly, the network extracts multi-level saliency features from light-field data. Secondly, edge features are extracted from low-level saliency features and optimized by ground-truth guidance. Then, to sufficiently leverage high-level saliency features and edge features, the network hierarchically fuses them in a complementary manner. Finally, spatial correlations between different levels of fused features are considered to detect salient objects. Our method can accurately locate salient objects with exquisite edge details, by extracting clear edge information and accurate saliency information and fully fusing them. We conduct extensive evaluations on three widely used benchmark datasets. The experimental results demonstrate the effectiveness of our method, and it is superior to eight state-of-the-art methods.
Funder
Natural Science Foundation of Guangdong Province
Shenzhen Science and Technology Research Fund
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献