A Detection Method for Social Network Images with Spam, Based on Deep Neural Network and Frequency Domain Pre-Processing

Author:

Shen HuaORCID,Liu Xinyue,Zhang Xianchao

Abstract

As a result of the rapid development of internet technology, images are widely used on various social networks, such as WeChat, Twitter or Facebook. It follows that images with spam can also be freely transmitted on social networks. Most of the traditional methods can only detect spam in the form of links and texts; there are few studies on detecting images with spam. To this end, a novel detection method for identifying social images with spam, based on deep neural network and frequency domain pre-processing, is proposed in this paper. Firstly, we collected several images with embedded spam and combined the DIV2K2017 dataset to build an image dataset for training the proposed detection model. Then, the specific components of the spam in the images were determined through experiments and the pre-processing module was specially designed. Low-frequency domain regions with less spam are discarded through Haar wavelet transform analysis. In addition, a feature extraction module with special convolutional layers was designed, and an appropriate number of modules was selected to maximize the extraction of three different high-frequency feature regions. Finally, the different high-frequency features are spliced along the channel dimension to obtain the final classification result. Our extensive experimental results indicate that the spam element mainly exists in the images as high-frequency information components; they also prove that the proposed model is superior to the state-of-the-art detection models in terms of detection accuracy and detection efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3