Efficient Architectures for Full Hardware Scrypt-Based Block Hashing System

Author:

Lam Duc KhaiORCID,Le Vu Trung DuongORCID,Tran Thi Hong

Abstract

The password-based key derivation function Scrypt has been employed for many services and applications due to its protection ability. It has also been employed as a proof-of-work algorithm in blockchain implementations. Although this cryptographic hash function provides very high security, the processing speed and power consumption to generate a hashed block for the blockchain network are low-performance. In this paper, a high-speed and low-power hardware architecture of the Scrypt function is proposed to generate blocks for the Scrypt-based blockchain network. This architecture minimizes the number of main computational blocks to reduce the power consumption of the system. In addition, the proposed sharing resources and pipelined architectures make the calculation speed increase significantly while the hardware cost is reduced by half compared to the parallel non-pipelined architecture. The full hardware system is designed and implemented on Xilinx Virtex-7 and Aveo U280 FPGA platforms. The hash rate of the proposed system reaches 229.1 kHash/s. Its hash rate, hardware and energy efficiencies are much higher than those of the other works implemented on FPGA and GPU hardware platforms. The proposed hardware architecture is also successfully implemented in an ASIC design using ROHM 180 nm CMOS technology.

Funder

Vietnam National University HoChiMinh City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HealthGuard: Blockchain-Powered Healthcare Data Security;2023 International Conference on Intelligent Computing and Next Generation Networks(ICNGN);2023-11-17

2. A Survey On Secure Architectures Using Hash Function Based On FPGA for Block Chain Enabled IoT Devices;2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP);2023-04-28

3. Secured Drone Communication Based on Esalsa20 Algorithm;International Journal of Circuits, Systems and Signal Processing;2023-03-06

4. Highly Secure and Robust Forensic System: Fordex Forensic Chain;Computational Intelligence, Data Analytics and Applications;2023

5. Blockchain Based E-Medical Data Storage for Privacy Protection;Advances in Intelligent Systems and Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3