Abstract
Online learning is a method for exploiting input data to update deep networks in the test stage to derive potential performance improvement. Existing online learning methods for single-image super-resolution (SISR) utilize an input low-resolution (LR) image for the online adaptation of deep networks. Unlike SISR approaches, reference-based super-resolution (RefSR) algorithms benefit from an additional high-resolution (HR) reference image containing plenty of useful features for enhancing the input LR image. Therefore, we introduce a new online learning algorithm, using several reference images, which is applicable to not only RefSR but also SISR networks. Experimental results show that our online learning method is seamlessly applicable to many existing RefSR and SISR models, and that improves performance. We further present the robustness of our method to non-bicubic degradation kernels with in-depth analyses.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献