Online Learning for Reference-Based Super-Resolution

Author:

Chae Byungjoo,Park JinsunORCID,Kim Tae-Hyun,Cho DonghyeonORCID

Abstract

Online learning is a method for exploiting input data to update deep networks in the test stage to derive potential performance improvement. Existing online learning methods for single-image super-resolution (SISR) utilize an input low-resolution (LR) image for the online adaptation of deep networks. Unlike SISR approaches, reference-based super-resolution (RefSR) algorithms benefit from an additional high-resolution (HR) reference image containing plenty of useful features for enhancing the input LR image. Therefore, we introduce a new online learning algorithm, using several reference images, which is applicable to not only RefSR but also SISR networks. Experimental results show that our online learning method is seamlessly applicable to many existing RefSR and SISR models, and that improves performance. We further present the robustness of our method to non-bicubic degradation kernels with in-depth analyses.

Funder

BK21 FOUR Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reference-based super-resolution reconstruction of remote sensing images based on a coarse-to-fine feature matching transformer;Engineering Applications of Artificial Intelligence;2024-09

2. Review on Deep Learning Network Architectures for Image Reconstruction;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

3. TBNet: Stereo Image Super-Resolution with Multi-Scale Attention;Journal of Circuits, Systems and Computers;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3