A Survey of Network-Based Hardware Accelerators

Author:

Skliarova IouliiaORCID

Abstract

Many practical data-processing algorithms fail to execute efficiently on general-purpose CPUs (Central Processing Units) due to the sequential matter of their operations and memory bandwidth limitations. To achieve desired performance levels, reconfigurable (FPGA (Field-Programmable Gate Array)-based) hardware accelerators are frequently explored that permit the processing units’ architectures to be better adapted to the specific problem/algorithm requirements. In particular, network-based data-processing algorithms are very well suited to implementation in reconfigurable hardware because several data-independent operations can easily and naturally be executed in parallel over as many processing blocks as actually required and technically possible. GPUs (Graphics Processing Units) have also demonstrated good results in this area but they tend to use significantly more power than FPGA, which could be a limiting factor in embedded applications. Moreover, GPUs employ a Single Instruction, Multiple Threads (SIMT) execution model and are therefore optimized to SIMD (Single Instruction, Multiple Data) operations, while in FPGAs fully custom datapaths can be built, eliminating much of the control overhead. This review paper aims to analyze, compare, and discuss different approaches to implementing network-based hardware accelerators in FPGA and programmable SoC (Systems-on-Chip). The performed analysis and the derived recommendations would be useful to hardware designers of future network-based hardware accelerators.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster reconstruction in the HGCAL at the Level 1 trigger;EPJ Web of Conferences;2024

2. Design Space Exploration of HW Accelerators and Network Infrastructure for FPGA-Based MPSoC;IEEE Access;2024

3. A Multi-Precision Floating-Point Multiplier Structure Applied to FPGA Embedded DSP;2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR);2023-09-22

4. Improving Characteristics of FPGA-Based FSMs Representing Sequential Blocks of Cyber-Physical Systems;Applied Sciences;2023-09-11

5. Hardware Accelerators And Accelerators For Machine Learning;2022 International Conference on IT and Industrial Technologies (ICIT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3