Abstract
Substrate-integrated waveguide (SIW) is a modern day (21st century) transmission line that has recently been developed. This technology has introduced new possibilities to the design of efficient circuits and components operating in the radio frequency (RF) and microwave frequency spectrum. Microstrip components are very good for low frequency applications but are ineffective at extreme frequencies, and involve rigorous fabrication concessions in the implementation of RF, microwave, and millimeter-wave components. This is due to wavelengths being short at higher frequencies. Waveguide devices, on the other hand, are ideal for higher frequency systems, but are very costly, hard to fabricate, and challenging to integrate with planar components in the neighborhood. SIW connects the gap that existed between conventional air-filled rectangular waveguide and planar transmission line technologies including the microstrip. This study explores the current advancements and new opportunities in SIW implementation of RF and microwave devices including filters, multiplexers (diplexers and triplexers), power dividers/combiners, antennas, and sensors for modern communication systems.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference102 articles.
1. Substrate Integrated Waveguide Filter: Basic Design Rules and Fundamental Structure Features
2. Microstrip Filters for RF/Microwave Applications;Hong,2011
3. Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunity;Nwajana,2020
4. Dispersion characteristics of substrate integrated rectangular waveguide
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献