LidSonic for Visually Impaired: Green Machine Learning-Based Assistive Smart Glasses with Smart App and Arduino

Author:

Busaeed Sahar,Mehmood RashidORCID,Katib Iyad,Corchado Juan M.ORCID

Abstract

Smart wearable technologies such as fitness trackers are creating many new opportunities to improve the quality of life for everyone. It is usually impossible for visually impaired people to orientate themselves in large spaces and navigate an unfamiliar area without external assistance. The design space for assistive technologies for the visually impaired is complex, involving many design parameters including reliability, transparent object detection, handsfree operations, high-speed real-time operations, low battery usage, low computation and memory requirements, ensuring that it is lightweight, and price affordability. State-of-the-art visually impaired devices lack maturity, and they do not fully meet user satisfaction, thus more effort is required to bring innovation to this field. In this work, we develop a pair of smart glasses called LidSonic that uses machine learning, LiDAR, and ultrasonic sensors to identify obstacles. The LidSonic system comprises an Arduino Uno device located in the smart glasses and a smartphone app that communicates data using Bluetooth. Arduino collects data, manages the sensors on smart glasses, detects objects using simple data processing, and provides buzzer warnings to visually impaired users. The smartphone app receives data from Arduino, detects and identifies objects in the spatial environment, and provides verbal feedback about the object to the user. Compared to image processing-based glasses, LidSonic requires much less processing time and energy to classify objects using simple LiDAR data containing 45-integer readings. We provide a detailed description of the system hardware and software design, and its evaluation using nine machine learning algorithms. The data for the training and validation of machine learning models are collected from real spatial environments. We developed the complete LidSonic system using off-the-shelf inexpensive sensors and a microcontroller board costing less than USD 80. The intention is to provide a design of an inexpensive, miniature, green device that can be built into, or mounted on, any pair of glasses or even a wheelchair to help the visually impaired. This work is expected to open new directions for smart glasses design using open software tools and off-the-shelf hardware.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Stick Navigation System for Visually Impaired Based on Machine Learning Algorithms Using Sensors Data;Journal of Sensor and Actuator Networks;2024-08-03

2. In-out YOLO glass: Indoor-outdoor object detection using adaptive spatial pooling squeeze and attention YOLO network;Biomedical Signal Processing and Control;2024-05

3. RETRACTED: Smart-YOLO glass: Real-time video based obstacle detection using paddling/paddling SAB YOLO network1;Journal of Intelligent & Fuzzy Systems;2024-04-18

4. Artificial Intelligence Powered Eye for Visually Challenged People;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

5. Vision Assist Glasses for Visually Impaired People;2024 2nd International Conference on Networking and Communications (ICNWC);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3