SAGMAD—A Signature Agnostic Malware Detection System Based on Binary Visualisation and Fuzzy Sets

Author:

Saridou BettyORCID,Rose Joseph RyanORCID,Shiaeles StavrosORCID,Papadopoulos BasilORCID

Abstract

Image conversion of byte-level data, or binary visualisation, is a relevant approach to security applications interested in malicious activity detection. However, in practice, binary visualisation has always been seen to have great limitations when dealing with large volumes of data, and would be a reluctant candidate as the core building block of an intrusion detection system (IDS). This is due to the requirements of computational time when processing the flow of byte data into image format. Machine intelligence solutions based on colour tone variations that are intended for pattern recognition would overtax the process. In this paper, we aim to solve this issue by proposing a fast binary visualisation method that uses Fuzzy Set theory and the H-indexing space filling curve. Our model can assign different colour tones on a byte, allowing it to be influenced by neighbouring byte values while preserving optimal locality indexing. With this work, we wish to establish the first steps in pursuit of a signature-free IDS. For our experiment, we used 5000 malicious and benign files of different sizes. Our methodology was tested on various platforms, including GRNET’s High-Performance Computing services. Further improvements in computation time allowed larger files to convert in roughly 0.5 s on a desktop environment. Its performance was also compared with existing machine learning-based detection applications that used traditional binary visualisation. Despite lack of optimal tuning, SAGMAD was able to achieve 91.94% accuracy, 90.63% precision, 92.7% recall, and an F-score of 91.61% on average when tested within previous binary visualisation applications and following their parameterisation scheme. The results exceeded malware file-based experiments and were similar to network intrusion applications. Overall, the results demonstrated here prove our method to be a promising mechanism for a fast AI-based signature-agnostic IDS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference94 articles.

1. Anomaly‐based intrusion detection systems: The requirements, methods, measurements, and datasets

2. A Comprehensive Systematic Literature Review on Intrusion Detection Systems

3. Intrusion detection systems for iot: Opportunities and challenges offered by edge computing;Spadaccino;arXiv,2020

4. Identification of malicious activities in industrial internet of things based on deep learning models;Muna;J. Inf. Secur. Appl.,2018

5. Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3