Dynamic Fall Detection Using Graph-Based Spatial Temporal Convolution and Attention Network

Author:

Egawa Rei1,Miah Abu Saleh Musa1ORCID,Hirooka Koki1ORCID,Tomioka Yoichi1ORCID,Shin Jungpil1ORCID

Affiliation:

1. School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Fukushima, Japan

Abstract

The prevention of falls has become crucial in the modern healthcare domain and in society for improving ageing and supporting the daily activities of older people. Falling is mainly related to age and health problems such as muscle, cardiovascular, and locomotive syndrome weakness, etc. Among elderly people, the number of falls is increasing every year, and they can become life-threatening if detected too late. Most of the time, ageing people consume prescription medication after a fall and, in the Japanese community, the prevention of suicide attempts due to taking an overdose is urgent. Many researchers have been working to develop fall detection systems to observe and notify about falls in real-time using handcrafted features and machine learning approaches. Existing methods may face difficulties in achieving a satisfactory performance, such as limited robustness and generality, high computational complexity, light illuminations, data orientation, and camera view issues. We proposed a graph-based spatial-temporal convolutional and attention neural network (GSTCAN) with an attention model to overcome the current challenges and develop an advanced medical technology system. The spatial-temporal convolutional system has recently proven the power of its efficiency and effectiveness in various fields such as human activity recognition and text recognition tasks. In the procedure, we first calculated the motion along the consecutive frame, then constructed a graph and applied a graph-based spatial and temporal convolutional neural network to extract spatial and temporal contextual relationships among the joints. Then, an attention module selected channel-wise effective features. In the same procedure, we repeat it six times as a GSTCAN and then fed the spatial-temporal features to the network. Finally, we applied a softmax function as a classifier and achieved high accuracies of 99.93%, 99.74%, and 99.12% for ImViA, UR-Fall, and FDD datasets, respectively. The high-performance accuracy with three datasets proved the proposed system’s superiority, efficiency, and generality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3