Cascading and Ensemble Techniques in Deep Learning

Author:

de Zarzà I.123ORCID,de Curtò J.123ORCID,Hernández-Orallo Enrique2ORCID,Calafate Carlos T.2ORCID

Affiliation:

1. Informatik und Mathematik, GOETHE-University Frankfurt, 60323 Frankfurt am Main, Germany

2. Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 Valencia, Spain

3. Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain

Abstract

In this study, we explore the integration of cascading and ensemble techniques in Deep Learning (DL) to improve prediction accuracy on diabetes data. The primary approach involves creating multiple Neural Networks (NNs), each predicting the outcome independently, and then feeding these initial predictions into another set of NN. Our exploration starts from an initial preliminary study and extends to various ensemble techniques including bagging, stacking, and finally cascading. The cascading ensemble involves training a second layer of models on the predictions of the first. This cascading structure, combined with ensemble voting for the final prediction, aims to exploit the strengths of multiple models while mitigating their individual weaknesses. Our results demonstrate significant improvement in prediction accuracy, providing a compelling case for the potential utility of these techniques in healthcare applications, specifically for prediction of diabetes where we achieve compelling model accuracy of 91.5% on the test set on a particular challenging dataset, where we compare thoroughly against many other methodologies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference18 articles.

1. Deep learning for diabetes: A systematic review;Zhu;IEEE J. Biomed. Health Inform.,2020

2. Tree-based classifier ensembles for early detection method of diabetes: An exploratory study;Tama;Artif. Intell. Rev.,2019

3. Chen, P., and Pan, C. (2018). Diabetes classification model based on boosting algorithms. BMC Bioinform., 19.

4. Imagenet classification with deep convolutional neural networks;Krizhevsky;Adv. Neural Inf. Process. Syst.,2012

5. Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3