Prototype-Based Support Example Miner and Triplet Loss for Deep Metric Learning

Author:

Yang Shan1,Zhang Yongfei123,Zhao Qinghua4,Pu Yanglin1,Yang Hangyuan1

Affiliation:

1. Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing 100191, China

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

3. Pengcheng Laboratory, Shenzhen 518055, China

4. State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Deep metric learning aims to learn a mapping function that projects input data into a high-dimensional embedding space, facilitating the clustering of similar data points while ensuring dissimilar ones are far apart. The most recent studies focus on designing a batch sampler and mining online triplets to achieve this purpose. Conventionally, hard negative mining schemes serve as the preferred batch sampler. However, most hard negative mining schemes search for hard examples in randomly selected mini-batches at each epoch, which often results in less-optimal hard examples and thus sub-optimal performances. Furthermore, Triplet Loss is commonly adopted to perform online triplet mining by pulling the hard positives close to and pushing the negatives away from the anchor. However, when the anchor in a triplet is an outlier, the positive example will be pulled away from the centroid of the cluster, thus resulting in a loose cluster and inferior performance. To address the above challenges, we propose the Prototype-based Support Example Miner (pSEM) and Triplet Loss (pTriplet Loss). First, we present a support example miner designed to mine the support classes on the prototype-based nearest neighbor graph of classes. Following this, we locate the support examples by searching for instances at the intersection between clusters of these support classes. Second, we develop a variant of Triplet Loss, referred to as a Prototype-based Triplet Loss. In our approach, a dynamically updated prototype is used to rectify outlier anchors, thus reducing their detrimental effects and facilitating a more robust formulation for Triplet Loss. Extensive experiments on typical Computer Vision (CV) and Natural Language Processing (NLP) tasks, namely person re-identification and few-shot relation extraction, demonstrated the effectiveness and generalizability of the proposed scheme, which consistently outperforms the state-of-the-art models.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3