A Novel Localization Technology Based on DV-Hop for Future Internet of Things

Author:

Yang Xiaoying12,Zhang Wanli13,Tan Chengfang12,Liao Tongqing2

Affiliation:

1. School of Information Engineering, Suzhou University, Suzhou 234000, China

2. School of Electronic Information Engineering, Anhui University, Hefei 230039, China

3. Anhui Provincial Key Laboratory of Intelligent Building and Building Energy Conservation, Anhui Jianzhu University, Hefei 230022, China

Abstract

In recent years, localization has become a hot issue in many applications of the Internet of Things (IoT). The distance vector-hop (DV-Hop) algorithm is accepted for many fields due to its uncomplicated, low-budget, and common hardware, but it has the disadvantage of low positioning accuracy. To solve this issue, an improved DV-Hop algorithm—TWGDV-Hop—is put forward in this article. Firstly, the position is broadcast by using three communication radii, the hop is subdivided, and a hop difference correction coefficient is introduced to correct hops between nodes to make them more accurate. Then, the strategy of the square error fitness function is spent in calculating the average distance per hop (ADPH), and the distance weighting factor is added to jointly modify ADPH to make them more accurate. Finally, a good point set and Levy flight strategy both are introduced into gray wolf algorithm (GWO) to enhance ergodic property and capacity for unfettering the local optimum of it. Then, the improved GWO is used to evolve the place of each node to be located, further improving the location accuracy of the node to be located. The results of simulation make known that the presented positioning algorithm has improved positioning accuracy by 51.5%, 40.35%, and 66.8% compared to original DV-Hop in square, X-shaped, and O-shaped random distribution environments, respectively, with time complexity somewhat increased.

Funder

Anhui Key Laboratory of Intelligent Building and Building Energy Efficiency of Anhui University of Architecture and Architecture

Anhui Provincial Key Research and Development Program

State Key Laboratory of Tea Biology and Resource Utilization of Anhui Agricultural University

Domestic Visiting Program for Outstanding Young Teachers in Colleges and Universities

Natural Research Science Institute of Anhui Universities

Suzhou University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3