TSM-CV: Twitter Sentiment Analysis for COVID-19 Vaccines Using Deep Learning

Author:

Albahli Saleh1ORCID,Nawaz Marriam2

Affiliation:

1. Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

2. Department of Software Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

Abstract

The coronavirus epidemic has imposed a devastating impact on humans around the globe, causing profound anxiety, fear, and complex emotions and feelings. Vaccination against the new coronavirus has started, and people’s feelings are becoming more diverse and complicated. In the presented work, our goal is to use the deep learning (DL) technique to understand and elucidate their feelings. Due to the advancement of IT and internet facilities, people are socially connected to explain their emotions and sentiments. Among all social sites, Twitter is the most used platform among consumers and can assist scientists to comprehend people’s opinions related to anything. The major goal of this work is to understand the audience’s varying sentiments about the vaccination process by using data from Twitter. We have employed both the historic (All COVID-19 Vaccines Tweets Kaggle dataset) and real (tweets) data to analyze the people’s sentiments. Initially, a preprocessing step is applied to the input samples. Then, we use the FastText approach for computing semantically aware features. In the next step, we apply the Valence Aware Dictionary for sentiment Reasoner (VADER) method to assign the labels to the collected features as being positive, negative, or neutral. After this, a feature reduction step using the Non-Negative Matrix Factorization (NMF) approach is utilized to minimize the feature space. Finally, we have used the Random Multimodal Deep Learning (RMDL) classifier for sentiment prediction. We have confirmed through experimentation that our work is effective in examining the emotions of people toward the COVID-19 vaccines. The presented work has acquired an accuracy result of 94.81% which is showing the efficacy of our strategy. Other standard measures like precision, recall, F1-score, AUC, and confusion matrix are also reported to show the significance of our work. The work is aimed to improve public understanding of coronavirus vaccines which can help the health departments to stop the anti-vaccination leagues and motivate people to a booster dose of coronavirus.

Funder

Deanship of Scientific Research, Qassim University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3