An Industrial Load Classification Method Based on a Two-Stage Feature Selection Strategy and an Improved MPA-KELM Classifier: A Chinese Cement Plant Case

Author:

Zhou Mengran1,Zhu Ziwei1,Hu Feng1ORCID,Bian Kai1,Lai Wenhao1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Accurately identifying industrial loads helps to accelerate the construction of new power systems and is crucial to today’s smart grid development. Therefore, this paper proposes an industrial load classification method based on two-stage feature selection combined with an improved marine predator algorithm (IMPA)-optimized kernel extreme learning machine (KELM). First, the time- and frequency-domain features of electrical equipment (active and reactive power) are extracted from the power data after data cleaning, and the initial feature pool is established. Next, a two-stage feature selection algorithm is proposed to generate the smallest features, leading to superior classification accuracy. In the initial selection phase, each feature weight is calculated using ReliefF technology, and the features with smaller weights are removed to obtain the candidate feature set. In the reselection stage, the k-nearest neighbor classifier (KNN) based on the MPA is designed to obtain the superior combination of features from the candidate feature set concerning the classification accuracy and the number of feature inputs. Third, the IMPA-KELM classifier is developed as a load identification model. The MPA improvement strategy includes self-mapping to generate chaotic sequence initialization and boundary mutation operations. Compared with the MPA, IMPA has a faster convergence speed and more robust global search capability. In this paper, actual data from the cement industry within China are used as a research case. The experimental results show that after two-stage feature selection, the initial feature set reduces the feature dimensionality from 58 dimensions to 3 dimensions, which is 5.17% of the original. In addition, the proposed IMPA-KELM has the highest overall recognition accuracy of 93.39% compared to the other models. The effectiveness and feasibility of the proposed method are demonstrated.

Funder

National Key Research and Development Program of China

Energy Internet Joint Fund Project of Anhui Province, China

Major Science and Technology Program of Anhui Province, China

Graduate Innovation Fund Project of Anhui University of Science and Technology, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3