A 34.7 µW Speech Keyword Spotting IC Based on Subband Energy Feature Extraction

Author:

Wu Gexuan1,Wei Jianlong1,Wang Shuai1,Wei Guangshun1,Li Bing1

Affiliation:

1. State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China

Abstract

In the era of the Internet of Things (IoT), voice control has enhanced human–machine interaction and the accuracy of keyword spotting (KWS) algorithms has reached 97%; however, the high power consumption of KWS algorithms caused by their huge computing and storage requirements has limited their application in Artificial Intelligence of Things (AIoT) devices. In this study, voice features are extracted by utilizing the fast discrete cosine transform (FDCT) for frequency-domain transformation and to shorten the process of calculating the logarithmic spectrum and cepstrum. The designed KWS system is a two-stage wake-up system, with a sound detection (SD) awakening KWS. The inference process of the KWS network is achieved using time-division computation, reducing the KWS clock to an ultra-low frequency of 24 kHz.At the same time, the implementation of a depthwise separable convolution neural network (DSCNN) greatly reduces the parameter quantity and computation. Under the GSMC 0.11 µm technology, post-layout simulation results show that the total synthesized area of the entire system circuit is 0.58 mm2, the power consumption is 34.7 µW, and the F1-score of the KWS is 0.89 with 10 dB noise, which makes it suitable as a KWS system in AIoT devices.

Funder

Shenzhen Science and Technology Development Funds

Guangdong Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3