An Enhancement Method in Few-Shot Scenarios for Intrusion Detection in Smart Home Environments

Author:

Chen Yajun1,Wang Junxiang1,Yang Tao2,Li Qinru3,Nijhum Nahian Alom4

Affiliation:

1. School of Electronic Information Engineering, China West Normal University, Nanchong 637001, China

2. Education and Information Technology Center, China West Normal University, Nanchong 637001, China

3. School of Computer Science, China West Normal University, Nanchong 637001, China

4. School of Software Engineering, China West Normal University, Nanchong 637001, China

Abstract

Different devices in the smart home environment are subject to different levels of attack. Devices with lower attack frequencies confront difficulties in collecting attack data, which restricts the ability to train intrusion detection models. Therefore, this paper presents a novel method called EM-FEDE (enhancement method based on feature enhancement and data enhancement) to generate adequate training data for expanding few-shot datasets. Training intrusion detection models with an expanded dataset can enhance detection performance. Firstly, the EM-FEDE method adaptively extends the features by analyzing the historical intrusion detection records of smart homes, achieving format alignment of device data. Secondly, the EM-FEDE method performs data cleaning operations to reduce noise and redundancy and uses a random sampling mechanism to ensure the diversity of the few-shot data obtained by sampling. Finally, the processed sampling data is used as the input to the CWGAN, and the loss between the generated and real data is calculated using the Wasserstein distance. Based on this loss, the CWGAN is adjusted. Finally, the generator outputs effectively generated data. According to the experimental findings, the accuracy of J48, Random Forest, Bagging, PART, KStar, KNN, MLP, and CNN has been enhanced by 21.9%, 6.2%, 19.4%, 9.2%, 6.3%, 7%, 3.4%, and 5.9%, respectively, when compared to the original dataset, along with the optimal generation sample ratio of each algorithm. The experimental findings demonstrate the effectiveness of the EM-FEDE approach in completing sparse data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3