Capacitance Estimation for Electrical Capacitance Tomography Sensors Using Digital Processing of Time-Domain Voltage Response to Single-Pulse Excitation

Author:

Kalarickel Ramakrishnan Praveen1ORCID,Westwood Timothy12ORCID,Magalhães Gouveia Tomé1,Taani Mahdi13ORCID,de Jager Kylie1ORCID,Murdoch Kenny1ORCID,Orlov Andrey A.4,Ozhgibesov Mikhail S.4,Propodalina Tatiana V.4,Wojtowicz Natalia1

Affiliation:

1. Zedsen Limited, 21a John St., London WC1N 2BF, UK

2. Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK

3. Department of Physics, King’s College London, London WC2R 2LS, UK

4. Perfect Art, 85 Great Portland St., 1st Floor, London W1W 7LT, UK

Abstract

In this paper, a new approach for capacitance measurement for electrical capacitance tomography (ECT) sensors is proposed. The method is based on the digital processing of the time-domain voltage measurements at the sensor electrodes. Furthermore, a robust capacitance estimation algorithm is developed to convert the measured voltage time-series to inter-electrode capacitances. The proposed measurement technique simplifies the electronic design of the ECT sensor and is suitable for use in applications requiring a compact device with a fast scan time. The accuracy and sensitivity of the method are investigated numerically and experimentally using a prototype sensor. In particular, the sensitivity of the estimated capacitance to measurement noise levels is analyzed in detail. Additionally, an analysis of the parameters that affect the accuracy of estimated capacitances is carried out from which we are able to demonstrate that the method is immune to effects such as stray capacitances between the electrodes and the ground. A prototype sensor with an open curved geometry on a millimeter scale is used to test the method empirically. Experimental results obtained for measurements with mineral oil and water are shown and compared against capacitances obtained using a physics-based forward model of the sensor. The inter-electrode capacitances in the range of tens of femtofarads to a few picofarads are estimated and a close match with the forward model results is obtained.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3