Ultraviolet Irradiation Effects on luminescent Centres in Bismuth-Doped and Bismuth-Erbium Co-Doped Optical Fibers via Atomic Layer Deposition

Author:

Uddin Rahim,Wen Jianxiang,He Tao,Pang Fufei,Chen Zhenyi,Wang Tingyun

Abstract

The effects of ultraviolet irradiation on luminescent centres in bismuth-doped (BDF) and bismuth/erbium co-doped (BEDF) optical fibers were examined in this study. The fibers were fabricated by modified chemical vapor deposition combining with atomic layer deposition method. The fibers were exposed to irradiation from a 193 nm pulsed wave argon fluoride laser, and an 830 nm wavelength laser diode pump source was employed for excitation. The experimental results showed that, for the BDF, the transmission loss was slightly reduced and the luminescence intensity was increased at the bismuth-related active aluminum centre (BAC-Al). Then, for the BEDF, the transmission loss was increased a little and the luminescence intensity was also increased at the BAC-Al centre. However, the luminescence intensity was decreased at approximately 1420 nm of the bismuth-related active silica centre (BAC-Si) for all fiber samples. One possible formation mechanism for luminescence intensity changes was probably associated with the valence state transfer of bismuth ions. The other possible mechanism was that the ArF-driven two-photon process caused luminescence changes in BAC-Al and BAC-Si. It was very important to reveal nature of luminescence properties of Bi-doped and Bi/Er co-doped optical fiber.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3