Abstract
Calibration of the unknown direction-dependent (DD) sensor phase and aliasing-free directions of arrival (DOA) estimation for sparse linear arrays are difficult tasks. In this work, we deploy an individual standard sensor with a known sensor phase response along the axis of the uncalibrated sparse linear array, a self-calibration method is proposed, in which the unknown DD sensor phase and the aliasing-free DOAs are both estimated. The proposed method is realized with a two-step scheme. In the first step, the sensor phase is eliminated by the Kronecker product of the covariance matrices in two different frequency bins, and the frequency difference satisfies the spatial Nyquist sampling theorem. Then, the DOAs can be robustly estimated without the influences of grating lobes and unknown sensor phase parameters. In the second step, the steering matrix is estimated with the known phase parameters of the deployed standard sensor. Then, the DD sensor phase is extracted from the steering matrix using the DOAs obtained in the first step. Hence, the disadvantages of iteration-based strategies in conventional calibration algorithms (e.g., local minima convergence) can be avoided. The performance of the proposed method is evaluated using simulation data and compared with that of Cramer–Rao bounds.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference33 articles.
1. Wang, S., Ren, S., Li, X., Wang, G., and Wang, W. (2022). A New Sparse Optimal Array Design Based on Extended Nested Model for High-Resolution DOA Estimation. Electronics, 11.
2. Jie, X., Zheng, B., and Gu, B. (2022). Gain and Phase Calibration of Uniform Rectangular Arrays Based on Convex Optimization and Neural Networks. Electronics, 11.
3. On robust Capon beamforming and diagonal loading;Jian;IEEE Trans. Signal Process.,2003
4. Walt, K., Scott, W., and Chuck, K. (2005). Op Amp Applications Handbook, Newnes.
5. Review: Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection;Bao;PhotoniX,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献