Fabrication of 30 µm Sn Microbumps by Electroplating and Investigation of IMC Characteristics on Shear Strength

Author:

Na Chang-YunORCID,Jeon Byung-Min,Kim Jong-Wook,Jung Woon-Seok,Jeong Jae-Seong,Cho Sung-Min,Park Hwa-Sun

Abstract

In this paper, we prepared a pure Sn microbump with a diameter of 30 µm using an electroplating method for a solder cap on a Cu post/Ni barrier and then determined its IMC characteristics and shear strength according to reflow recovery. In order to secure uniformity of the bump height, it was optimized through WID and WIW evaluation methods. Using an optimized plating system, bumps with a diameter of 30 µm, a height of 40 µm, and a space of 50 µm were formed on a 4-inch wafer. Shear strength was measured according to the number of reflows. IMC was evaluated through cross-sectional and plane analyses of bumps. Its correlation with shear strength according to the number of reflows was derived. The Sn plating system optimized each process condition according to the Sn concentration, current density, and temperature. The shape, surface condition, and height uniformity of the bump were quantified by a 3D profiler and FIB analysis. Height uniformity (WID) according to the concentration was confirmed to be approximately 2% when the Sn concentration was 60 g/L. WID according to the additive was confirmed to be 2% when the Sn concentration was 60 mL/L. WID according to the plating temperature was excellent in the shape of the bump at 30 °C, and a value of 2% was confirmed. The WIW for the Sn plating thickness on a 4-inch wafer was confirmed to have a value of ±3.88%. A shear test between the Cu and Sn junction was conducted to verify the shear strength of the manufactured bump. At this time, reflow was performed 1, 3, 5, 7, and 10 times for each sample. It was confirmed that as the number of flows increased, shear strength first increased. It then decreased sharply. It was confirmed that as the number of reflows increased, the thickness and cross-section area of the IMC first increased. They then gradually became saturated. The IMC between Cu and Sn was created in island form at the beginning of the reflow, resulting in increased roughness and shear strength. However, as the number of reflows increased, the roughness decreased since the IMC generated by the island was combined. The shear strength also decreased sharply.

Funder

Advanced Technology Center

Next Generation Intelligence Semiconductor Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3