4D: A Real-Time Driver Drowsiness Detector Using Deep Learning

Author:

Jahan Israt,Uddin K. M. AslamORCID,Murad Saydul AkbarORCID,Miah M. Saef UllahORCID,Khan Tanvir ZamanORCID,Masud MehediORCID,Aljahdali SultanORCID,Bairagi Anupam KumarORCID

Abstract

There are a variety of potential uses for the classification of eye conditions, including tiredness detection, psychological condition evaluation, etc. Because of its significance, many studies utilizing typical neural network algorithms have already been published in the literature, with good results. Convolutional neural networks (CNNs) are employed in real-time applications to achieve two goals: high accuracy and speed. However, identifying drowsiness at an early stage significantly improves the chances of being saved from accidents. Drowsiness detection can be automated by using the potential of artificial intelligence (AI), which allows us to assess more cases in less time and with a lower cost. With the help of modern deep learning (DL) and digital image processing (DIP) techniques, in this paper, we suggest a CNN model for eye state categorization, and we tested it on three CNN models (VGG16, VGG19, and 4D). A novel CNN model named the 4D model was designed to detect drowsiness based on eye state. The MRL Eye dataset was used to train the model. When trained with training samples from the same dataset, the 4D model performed very well (around 97.53% accuracy for predicting the eye state in the test dataset). The 4D model outperformed the performance of two other pretrained models (VGG16, VGG19). This paper explains how to create a complete drowsiness detection system that predicts the state of a driver’s eyes to further determine the driver’s drowsy state and alerts the driver before any severe threats to road safety.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Approach of Drowsiness Detection Based on ResNet50 and Xception Architectures;2023 3rd International Conference on Electronic Engineering (ICEEM);2023-10-07

2. Enhanced Driver’s Drowsiness Detection System using CNN model;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

3. BlinkLinMulT: Transformer-Based Eye Blink Detection;Journal of Imaging;2023-09-26

4. Visual-Based Children and Pet Rescue from Suffocation and Incidence of Hyperthermia Death in Enclosed Vehicles;Sensors;2023-08-08

5. Driver Alertness and Awareness Monitoring System;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3