Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks

Author:

Roy KripanitaORCID,Kim Myung-Kyun

Abstract

Clustering is an effective topology control approach that evenly distributes loads across sensor nodes, enhances network scalability, and increases the lifetime in wireless sensor networks. In this paper, we propose a novel energy-efficient weighted cluster head (CH) selection approach that improves the overall performance of the network and increases energy efficiency. An optimization strategy is proposed that emphasizes adjusting the transmission range with the appropriate node density, which increases energy efficiency for intra- and inter-cluster communications to 86% and 97%, respectively. In addition, the implementation of a quantum search algorithm for choosing the CH is explained. Compared to the classical method such as EECS and HEED, the proposed quantum search algorithm has a quadratic speed-up advantage. The classical search algorithm requires N steps to find a specific element in an array of N elements, but instead of using a classical algorithm, Grover’s quantum search algorithm minimizes the complexity to O (N). In this work, an energy-efficient cluster head selection approach is illustrated through a classical weighted clustering algorithm, and its implementation is also extended through a quantum weighted search algorithm which is demonstrated by the simulation results.

Funder

2022 Research Fund of the University of Ulsan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. R-RPT-A Reliable Routing Protocol for Industrial Wireless Sensor Networks;Parallel and Distributed Computing, Applications and Technologies;2023-11-29

2. Quantum Computing in Telecommunication—A Survey;Mathematics;2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3