Abstract
Studies have shown that driver fatigue or unpleasant emotions significantly increase driving risks. Detecting driver emotions and fatigue states and providing timely warnings can effectively minimize the incidence of traffic accidents. However, existing models rarely combine driver emotion and fatigue detection, and there is space to improve the accuracy of recognition. In this paper, we propose a non-invasive and efficient detection method for driver fatigue and emotional state, which is the first time to combine them in the detection of driver state. Firstly, the captured video image sequences are preprocessed, and Dlib (image open source processing library) is used to locate face regions and mark key points; secondly, facial features are extracted, and fatigue indicators, such as driver eye closure time (PERCLOS) and yawn frequency are calculated using the dual-threshold method and fused by mathematical methods; thirdly, an improved lightweight RM-Xception convolutional neural network is introduced to identify the driver’s emotional state; finally, the two indicators are fused based on time series to obtain a comprehensive score for evaluating the driver’s state. The results show that the fatigue detection algorithm proposed in this paper has high accuracy, and the accuracy of the emotion recognition network reaches an accuracy rate of 73.32% on the Fer2013 dataset. The composite score calculated based on time series fusion can comprehensively and accurately reflect the driver state in different environments and make a contribution to future research in the field of assisted safe driving.
Funder
China’s National Key R&D Program
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference35 articles.
1. World Health Organization (2018). Global Status Report on Road Safety 2018: Summary, Technical Report.
2. Driver education: Enhancing knowledge of sleep, fatigue and risky behaviour to improve decision making in young drivers;Alvaro;Accid. Anal. Prev.,2018
3. Influence of traffic congestion on driver behavior in post-congestion driving;Li;Accid. Anal. Prev.,2020
4. Towards affect-integrated driving behavior research;Eon;Theor. Issues Ergon. Sci.,2015
5. Lee, Y.C. (2010). Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Sage Publications.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献