Towards Channel-Wise Bidirectional Representation Learning with Fixed-Point Positional Encoding for SoH Estimation of Lithium-Ion Battery

Author:

Pham ThienORCID,Truong Loi,Bui Hung,Tran Thang,Garg Akhil,Gao LiangORCID,Quan ThoORCID

Abstract

5G is the fifth generation of cellular networks and has been used in a lot of different areas. 5G often requires sudden rises in power consumption. To stabilize the power supply, a 5G system requires a lithium-ion battery (LIB) or a mechanism called AC main modernization to provide energy support during the power peak periods. The LIB approach is the best option in terms of simplicity and maintainability. Moreover, a 5G system requires not only high-performance energy but also the ability of tracking and prediction. Therefore, the requirement for a smart power supply for lithium-ion batteries with temporal monitoring and estimation is highly desirable. In this paper, we focus on artificial intelligence (AI) improvements to increase the accuracy of LIB state-of-health prediction. By observing the SeqInSeq nature of the battery data, our approach uses self-attention and fixed-point positional encoding. We also take advantage of autoregression to archive the trainable dependency from a non-linear branch and a linear branch in creating the final output. Compared with the current state-of-the-art (SOTA) method, our experimental results show that we provide better accuracy, compared with the baseline output using the NASA and CALCE datasets. From the same setting, we archive a reduction of 20.08% root mean square error (RMSE) and 29.01% mean absolute percentage error (MAPE) on NASA loss, compared to the SOTA approaches. On CALCE, the numbers are a 5.99% RMSE and 12.59% MAPE decrement, which is significant.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. On big data, artificial intelligence and smart cities;Allam;Cities,2019

2. The Internet of Things: A survey;Atzori;Comput. Netw.,2010

3. The World’s Technological Capacity to Store, Communicate, and Compute Information;Hilbert;Science,2011

4. Shi, Z. (2019). Advanced Artificial Intelligence, World Scientific. [2nd ed.].

5. Gemma, P. (2018, January 5–9). 5G for Smart Sustainable Cities. Proceedings of the International Telecommunication Union–Development Sector, Geneva, Switzerland.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3