VW-SC3D: A Sparse 3D CNN-Based Spatial–Temporal Network with View Weighting for Skeleton-Based Action Recognition

Author:

Lin XiaotianORCID,Xu Leiyang,Zhuang Songlin,Wang QiangORCID

Abstract

In recent years, human action recognition has received increasing attention as a significant function of human–machine interaction. The human skeleton is one of the most effective representations of human actions because it is highly compact and informative. Many recent skeleton-based action recognition methods are based on graph convolutional networks (GCNs) as they preserve the topology of the human skeleton while extracting features. Although many of these methods give impressive results, there are some limitations in robustness, interoperability, and scalability. Furthermore, most of these methods ignore the underlying information of view direction and rely on the model to learn how to adjust the view from training data. In this work, we propose VW-SC3D, a spatial–temporal model with view weighting for skeleton-based action recognition. In brief, our model uses a sparse 3D CNN to extract spatial features for each frame and uses a transformer encoder to obtain temporal information within the frames. Compared to GCN-based methods, our method performs better in extracting spatial–temporal features and is more adaptive to different types of 3D skeleton data. The sparse 3D CNN makes our model more computationally efficient and more flexible. In addition, a learnable view weighting module enhances the robustness of the proposed model against viewpoint changes. A test on two different types of datasets shows a competitive result with SOTA methods, and the performance is even better in view-changing situations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning System for Deep Surveillance;Mathematical Models Using Artificial Intelligence for Surveillance Systems;2024-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3