Streaming Potential in Gas Phase Discrete Unsaturated Pore

Author:

Zhao YongpengORCID,Sun Xiangyang,Nie Zaiping

Abstract

The seismoelectric effect of porous media is the main basis for seismoelectric logging. At present, most of the studies on the seismoelectric effect in unsaturated porous media adopt the model of pores with continuous distribution of gas and liquid. There is a lack of theoretical research on the micro mechanism of the seismoelectric effect of unsaturated porous media with discrete gas phase, and the existing studies do not consider the effect of the electric double layer at the gas–liquid interface on the seismoelectric effect. Based on the capillary model, this work adopted the gas phase discrete model, combined the electric double layer theory and the seepage principle, considered the effect of electric double layer at the pore wall and the gas–liquid interface, and studied the micro principle of the seismoelectric effect of unsaturated porous media. Firstly, we studied the variation of gas–water two-phase flow pattern with saturation in unsaturated pores, then proposed the equivalent principle of series circuits, deduced the effective streaming current and conductance of a pore containing multiple bubbles, and then deduced the streaming potential coupling coefficient in the unsaturated pores. We also studied the effect of pore parameters such as saturation, pore size, bubble spacing, pore fluid viscosity, and salinity on the streaming potential coupling coefficient. The results show that the streaming potential coupling coefficient first increases and then decreases with the decrease in saturation, which is the same as the trend measured in Allègre’s experiment, and provide a theoretical explanation for the non-monotonic change in the coupling coefficient with saturation in unsaturated porous media.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Streaming potentials across glass capillaries for sinusoidal pressure;Packard;J. Chem. Phys.,1953

2. Pride, S., and Morgan, F.D. (1989). SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists.

3. Electrokinetic dissipation induced by seismic waves;Pride;Geophysics,1991

4. Governing equations for the coupled electromagnetics and acoustics of porous media;Pride;Phys. Rev. B,1994

5. Streaming potential coupling coefficient of quartz glass bead packs: Dependence on grain diameter, pore size, and pore throat radius;Glover;Geophysics,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3