Low Leakage Current Metal–Insulator–Metal Device Based on a Beryllium Oxide Insulator Created by a Two-Step Spin-Coating Method as a Novel Type of Modified Pechini Synthesis

Author:

Jeon Young PyoORCID,Hong Dongpyo,Lee Sang-hwa,Lee Eun Jung,Cho Tae Woong,Kim Do Yeon,Kim Chae Yeon,Park JuSang,Kim Young Jun,Yoo Young JoonORCID,Park Sang Yoon

Abstract

Beryllium oxide (BeO) is considered to be an attractive alternative material for use in future industries in areas such as semiconductors, spacecraft, aircraft, and rocket technologies due to its high bandgap energy, useful melting point, good thermal conductivity, and dielectric constants. In this context, our approach is a novel method to produce BeO thin films based on a two-step spin-coating innovation of the conventional powder synthesis method. The surface morphology and the crystal structure of BeO thin films were observed to be dependent on the citric acid/beryllium sulfate ratio and the sintering temperature, respectively. To characterize the BeO films, X-ray photoelectron spectroscopy was conducted for an elemental analysis. Furthermore, the bandgap of the BeO thin films was determined by reflection electron energy loss spectroscopy. Finally, the leakage current of a planar metal–insulator–metal device consisting of Au/Ti/BeO thin film/Ti/Au electrodes was determined to be below the nA range over the linear voltage sweeping range of −20 V to +20 V. These results can assist researchers in the areas of morphology control strategies, phase transfer theories, and applications that utilize BeO thin film manufactured by a solution process.

Funder

Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT

National Research Foundation of Korea (NRF) funded by the Korean Government

Materials, Components and Equipment Research Program funded by Gyeonggi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3