High-Accuracy Gaussian Function Generator for Neural Networks

Author:

Popa Cosmin Radu

Abstract

A new improved accuracy CMOS Gaussian function generator will be presented. The original sixth-order approximation function that represents the basis for designing the proposed Gaussian circuit allows a large increase in the circuit accuracy and also of the input variable maximal range. The original proposed computational structure has a large dynamic output range of 27 dB, for a variation smaller than 1 dB as compared with the ideal Gaussian function. The circuit is simulated for 0.18 μm CMOS technology and has a low supply voltage (VDD = 0.7 V). Its power consumption is smaller than 0.22 μW, for VDD = 0.7 V, while the chip area is about 7 μm2. The new proposed architecture is re-configurable, the convenient modification of the coefficients allowing to obtain many mathematical functions using the same computational structure.

Funder

University Politehnica of Bucharest

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference14 articles.

1. Srivastava, R., Singh, U., and Gupta, M. (2011, January 11–14). Analog circuits for Gaussian function with improved performance. Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India.

2. Melendez-Rodriguez, M., and Silva-Martínez, J. (1999, January 28). A fully-programmable temperature-compensated analogue circuit for Gaussian functions. Proceedings of the Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications (Cat. No. 99EX303), Puerto Vallarta, Mexico.

3. Pour, M.E., and Mashoufi, B. (2011, January 25–27). A low power consumption and compact mixed-signal Gaussian membership function circuit for neural/fuzzy hardware. Proceedings of the 2011 International Conference on Electronic Devices, Systems and Applications (ICEDSA), Kuala Lumpur, Malaysia.

4. A CMOS analog circuit for Gaussian functions;Madrenas;IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process.,1996

5. A fully-programmable analog VLSI for Gaussian function generator using switched-current circuit;Zhao;Int. Conf. Wavelet Anal. Pattern Recognit.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3