Far-Field Wireless Power Transfer for the Internet of Things

Author:

Nusrat Tasin,Roy SayanORCID,Lotfi-Neyestanak Abbas Ali,Noghanian SimaORCID

Abstract

A complete end-to-end far-field wireless power transfer (WPT) is proposed and studied in this paper for the application of the Internet of Things (IoT) at the industrial, scientific, and medical (ISM) band of 2.4 GHz. The radiative WPT has achieved a remarkable attraction for the capability to transfer power in the long range. We propose two approaches. In the first approach, a 2×4 microstrip patch transmitter antenna array with a high gain and a narrow beamwidth is proposed that is rotated toward the IoT device using a small stepper motor. The performance of the rectifier in the receiving circuit was separately analyzed, and 17.54% efficiency was achieved with a load of 0.6 kΩ for the circuit, while the input power was 10 dBm. The overall system test was performed and the targeted result was investigated considering the distance between the transmitter and the receiver, and an input radio frequency (RF) power of 5 dBm to 15 dBm at 2.4 GHz. The second approach uses a 1×4 transmitter antenna array fed through a Butler matrix to provide four individual beams with a 22.5∘ angular separation, and 90∘ total angular coverage. The goal was to focus the power into four angular locations and to reduce the power waste in other directions. A mobile app was developed to control the direction of the beam. A system efficiency of as much as 19% was measured for an input RF power of 0 dBm and a resistive load of 62 kΩ.

Funder

North Dakota Department of Commerce

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3