Development of Non-Destructive Testing Device for Plant Leaf Expansion Monitoring

Author:

Meng Xianchang,Zheng Yili,Liu Weiping

Abstract

This paper designs a plant leaf expansion pressure non-destructive detection device, aiming to promote plant leaf expansion pressure research and achieve precision irrigation. The design is based on leaf expansion pressure probe technology, which can effectively monitor the plant leaf expansion pressure by detecting the feedback of the leaf under constant pressure. In this paper, the stability of the sensor and the calibration model is tested. The calibration experiments showed that the coefficient of determination R2 of the sensor was over 0.99, the static test results showed that the range of the sensor was 0–300 kPa, and the fluctuation of the sensor was less than 0.2 kPa during the long-term stability test. The indoor comparison tests showed that there was a significant difference in the variation of leaf expansion pressure data between plants under drought conditions and normal conditions. The irrigation experiments showed that the leaf expansion pressure was very sensitive to irrigation. The correlation between the expansion pressure data and the environmental factors was analyzed. The correlation coefficient between expansion pressure and light intensity was found to be 0.817. The results of the outdoor experiments showed that there was a significant difference in the expansion pressure of plants under different weather conditions. The data show that the plant leaf expansion pressure non-destructive detection device designed in this paper can be used both as an effective means of detecting plant leaf expansion pressure and promoting the research of plant physiological feedback mechanisms and precision irrigation.

Funder

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3