EdgeTrust: A Lightweight Data-Centric Trust Management Approach for IoT-Based Healthcare 4.0

Author:

Awan Kamran AhmadORCID,Ud Din IkramORCID,Almogren AhmadORCID,Khattak Hasan AliORCID,Rodrigues Joel J. P. C.ORCID

Abstract

Internet of Things (IoT) is bringing a revolution in today’s world where devices in our surroundings become smart and perform daily-life activities and operations with more precision. The architecture of IoT is heterogeneous, providing autonomy to nodes so that they can communicate with other nodes and exchange information at any time. IoT and healthcare together provide notable facilities for patient monitoring. However, one of the most critical challenges is the identification of malicious and compromised nodes. In this article, we propose a machine learning-based trust management approach for edge nodes to identify nodes with malicious behavior. The proposed mechanism utilizes knowledge and experience components of trust, where knowledge is further based on several parameters. To prevent the successful execution of good and bad-mouthing attacks, the proposed approach utilizes edge clouds, i.e., local data centers, to collect recommendations to evaluate indirect and aggregated trust. The trustworthiness of nodes is ranked between a certain limit, and only those nodes that satisfy the threshold value can participate in the network. To validate the performance of the proposed approach, we have performed extensive simulations in comparison with existing approaches. The results show the effectiveness of the proposed approach against several potential attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3