A Brief Analysis of Multimodal Medical Image Fusion Techniques

Author:

Saleh Mohammed Ali,Ali AbdElmgeid A.,Ahmed KareemORCID,Sarhan Abeer M.

Abstract

Recently, image fusion has become one of the most promising fields in image processing since it plays an essential role in different applications, such as medical diagnosis and clarification of medical images. Multimodal Medical Image Fusion (MMIF) enhances the quality of medical images by combining two or more medical images from different modalities to obtain an improved fused image that is clearer than the original ones. Choosing the best MMIF technique which produces the best quality is one of the important problems in the assessment of image fusion techniques. In this paper, a complete survey on MMIF techniques is presented, along with medical imaging modalities, medical image fusion steps and levels, and the assessment methodology of MMIF. There are several image modalities, such as Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Single Photon Emission Computed Tomography (SPECT). Medical image fusion techniques are categorized into six main categories: spatial domain, transform fusion, fuzzy logic, morphological methods, and sparse representation methods. The MMIF levels are pixel-level, feature-level, and decision-level. The fusion quality evaluation metrics can be categorized as subjective/qualitative and objective/quantitative assessment methods. Furthermore, a detailed comparison between obtained results for significant MMIF techniques is also presented to highlight the pros and cons of each fusion technique.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference82 articles.

1. Blum, R.S., Xue, Z., and Zhang, Z. (2018). Multi-Sensor Image Fusion and Its Applications, CRC Press.

2. Advanced f-transform-based image fusion;Vajgl;Adv. Fuzzy Syst.,2012

3. Survey study of multimodality medical image fusion methods;Tawfik;Multimed. Tools Appl.,2021

4. Feature-motivated simplified adaptive PCNN-based medical image fusion algorithm in NSST domain;Ganasala;J. Digit. Imaging,2016

5. (2022, December 22). PubMed, Available online: https://www.ncbi.nlm.nih.gov/pubmed/.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3