Ensemble Malware Classification System Using Deep Neural Networks

Author:

Narayanan Barath NarayananORCID,Davuluru Venkata Salini Priyamvada

Abstract

With the advancement of technology, there is a growing need of classifying malware programs that could potentially harm any computer system and/or smaller devices. In this research, an ensemble classification system comprising convolutional and recurrent neural networks is proposed to distinguish malware programs. Microsoft’s Malware Classification Challenge (BIG 2015) dataset with nine distinct classes is utilized for this study. This dataset contains an assembly file and a compiled file for each malware program. Compiled files are visualized as images and are classified using Convolutional Neural Networks (CNNs). Assembly files consist of machine language opcodes that are distinguished among classes using Long Short-Term Memory (LSTM) networks after converting them into sequences. In addition, features are extracted from these architectures (CNNs and LSTM) and are classified using a support vector machine or logistic regression. An accuracy of 97.2% is achieved using LSTM network for distinguishing assembly files, 99.4% using CNN architecture for classifying compiled files and an overall accuracy of 99.8% using the proposed ensemble approach thereby setting a new benchmark. An independent and automated classification system for assembly and/or compiled files provides the luxury to anti-malware industry experts to choose the type of system depending on their available computational resources.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Symantec Internet Security Threat Report https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

2. Malware phylogeny generation using permutations of code

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3