Wind Turbine Anomaly Detection Based on SCADA Data Mining

Author:

Liu XiaoyuanORCID,Lu SenxiangORCID,Ren Yan,Wu Zhenning

Abstract

In this paper, a wind turbine anomaly detection method based on a generalized feature extraction is proposed. Firstly, wind turbine (WT) attributes collected from the Supervisory Control And Data Acquisition (SCADA) system are clustered with k-means, and the Silhouette Coefficient (SC) is adopted to judge the effectiveness of clustering. Correlation between attributes within a class becomes larger, correlation between classes becomes smaller by clustering. Then, dimensions of attributes within classes are reduced based on t-Distributed-Stochastic Neighbor Embedding (t-SNE) so that the low-dimensional attributes can be more full and more concise in reflecting the WT attributes. Finally, the detection model is trained and the normal or abnormal state is detected by the classification result 0 or 1 respectively. Experiments consists of three cases with SCADA data demonstrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3