Abstract
Facial emotion recognition (FER) has been an active research topic in the past several years. One of difficulties in FER is the effective capture of geometrical and temporary information from landmarks. In this paper, we propose a graph convolution neural network that utilizes landmark features for FER, which we called a directed graph neural network (DGNN). Nodes in the graph structure were defined by landmarks, and edges in the directed graph were built by the Delaunay method. By using graph neural networks, we could capture emotional information through faces’ inherent properties, like geometrical and temporary information. Also, in order to prevent the vanishing gradient problem, we further utilized a stable form of a temporal block in the graph framework. Our experimental results proved the effectiveness of the proposed method for datasets such as CK+ (96.02%), MMI (69.4%), and AFEW (32.64%). Also, a fusion network using image information as well as landmarks, is presented and investigated for the CK+ (98.47% performance) and AFEW (50.65% performance) datasets.
Funder
Ministry of Trade, Industry and Energy
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献