Abstract
Modern vehicles are integrating a growing number of electronics to provide a safer experience for the driver. Therefore, safety is a non-negotiable requirement that must be considered through the vehicle development process. The ISO 26262 standard provides guidance to ensure that such requirements are implemented. Fault injection is highly recommended for the functional verification of safety mechanisms or to evaluate their diagnostic coverage capability. An exhaustive analysis is not required, but evidence of best effort through the diagnostic coverage assessment needs to be provided when performing quantitative evaluation of hardware architectural metrics. These metrics support that the automotive safety integrity level—ranging from A (lowest) to D (strictest) levels—was obeyed. In this context, this paper proposed a verification solution in order to build an approach that can accelerate the diagnostic coverage assessment via fault injection in the semiconductor level (i.e., hardware description language). The proposed solution does not require any modification of the design model to enable acceleration. Small parts of the OpenRISC architecture (namely a carry adder, the Tick Timer peripheral, and the exception block) were used to illustrate the methodology.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献