Novel Low-Complexity and Low-Power Flip-Flop Design

Author:

Lin Jin-Fa,Hong Zheng-Jie,Tsai Chang-Ming,Wu Bo-Cheng,Yu Shao-Wei

Abstract

In this paper, a compact and low-power true single-phase flip-flop (FF) design with fully static operations is presented. The design is developed by using various circuit-reduction schemes and features a hybrid logic style employing both pass transistor logic (PTL) and static complementary metal-oxide semiconductor (CMOS) logic to reduce circuit complexity. These circuit optimization measures pay off in various aspects, including smaller clock-to-Q (CQ) delay, lower average power, lower leakage power, and smaller layout area; and the transistor-count is only 17. Fabricated in TSMC 180 nm CMOS technology, it reduces by over 29% the chip area compared to the conventional transmission gate FF (TGFF). To further show digital circuit/system level advantages, a multi-mode shift register has been realized. Experimental measurement results at 1.8 V/4 MHz show that, compared with the TGFF design, the proposed design saves 64.7% of power consumption while reducing chip area by 26.2%.

Funder

Ministry of Science and Technology, Taiwan

Council of Agriculture

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-03

2. Unleashing Power Efficiency: A Study Comparing Pulsed Latches and Flip-Flops for Low-Power Applications;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

3. Review of Different Flip-Flop Circuits and a Modified Flip-Flop Circuit for Low Voltage Operation;2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT);2022-10-07

4. Implementation and Optimization of CNTFET Based Ultra-Low Energy Delay Flip Flop Designs;Silicon;2022-08-31

5. Low-Voltage and Low-Power True-Single-Phase 16-Transistor Flip-Flop Design;Sensors;2022-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3