Abstract
An accurate fuel consumption prediction system for transportation units is the pillar that a more efficient fuel management can rely on. This in turn may eventually lead to cost and emission savings for the unit’s owner. Numerous studies have been conducted for predicting the fuel usage in various means of transportation (i.e., airplanes, trucks, and vehicles). However, there is a limited number of researches that focus on passenger ships. These researches involve traditional machine learning models. There is a lack of literature on deep-learning-based forecasting models. The present paper serves as an initial study for exploring the potential of deep learning in day-ahead fuel consumption on a passenger ship. Firstly, a discussion is provided for the parameters that influence the fuel consumption. Secondly, the day-ahead fuel forecasting problem is formulated. To fully examine the influence of exogenous parameters on the consumption, various scenarios are formulated that differ in the types and number of inputs. The proposed forecasting model combines shallow and deep learning. Several machine learning and time series models were compared, and the results indicate the robustness of the proposed approach.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献