25,000 fps Computational Ghost Imaging with Ultrafast Structured Illumination

Author:

Huang Hongxu,Li Lijing,Ma Yuxuan,Sun Mingjie

Abstract

Computational ghost imaging, as an alternative photoelectric imaging technology, uses a single-pixel detector with no spatial resolution to capture information and reconstruct the image of a scene. Due to its essentially temporal measurement manner, improving the image frame rate is always a major concern in the research of computational ghost imaging technology. By taking advantage of the fast switching time of LED, an LED array was developed to provide a structured illumination light source in our work, which significantly improves the structured illumination rate in the computational ghost imaging system. The design of the LED array driver circuit presented in this work makes full use of the LED switching time and achieves a pattern displaying rate of 12.5 MHz. Continuous images with 32 × 32 pixel resolution are reconstructed at a frame rate of 25,000 fps, which is approximately 500 times faster than what a universally used digital micromirror device can achieve. The LED array presented in this work can potentially be applied to other techniques requiring high-speed structured illumination, such as fringe 3D profiling and array-based LIFI.

Funder

National Natural Science Foundation of China

Open Research Projects of Zhejiang Lab

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lensless imaging via LED array based computational ghost imaging;Optics & Laser Technology;2025-01

2. Hybrid CNN-Mamba network for single-pixel imaging;Optics Express;2024-09-10

3. High speed single pixel imaging using a microLED-on-CMOS light projector;Optics Express;2024-06-21

4. Optimization of random illumination pattern in computational ghost imaging;Sixth Conference on Frontiers in Optical Imaging and Technology: Novel Technologies in Optical Systems;2024-04-30

5. Progress and applications of ghost imaging with classical sources: a brief review [Invited];Chinese Optics Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3