Design of an Oscillation-Based BIST System for Active Analog Integrated Filters in 0.18 µm CMOS

Author:

Kladovščikov Leonid,Jurgo Marijan,Navickas RomualdasORCID

Abstract

In this paper, an oscillation-based built-in self-test system for active an analog integrated circuit is presented. This built-in self-test system was used to detect catastrophic and parametric faults, introduced during chip manufacturing. As circuits under test (CUT), second-order Sallen-Key, Akerberg-Mossberg and Tow-Thomas biquad filters were designed. The proposed test hardware detects parametric and catastrophic faults on changeable limits. The influence of both oscillation and test hardware on fault detection limits were investigated and analyzed. The proposed oscillation based self-test system was designed and simulated in 0.18 µm complementary metal-oxide semiconductor (CMOS) technology. Due to the easiness of implementation and configuration for testing of different active analog filters, such self-test systems can be effectively used in modern integrated circuits, made of a large number of devices and circuits, such as the multi-standard transceivers used in the core hardware of software-defined radios. Using the proposed test strategy, the fault tolerance limits for catastrophic faults varied from 96% to 100% for all injected faults in different structures of low pass filters (LPF). The detection range of parametric faults of passive components’ nominal value, depending on the used structure of the filter, did not exceed –0.74% – 0.72% in case of Sallen-Key, –3.31% – 1.00% in case of Akerberg-Mossberg and –2.39% – 1.44% in case of Tow-Thomas LPF.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3