Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis

Author:

Wang Yuan-KaiORCID,Chen Hong-Yu,Chen Jian-Ru

Abstract

Sleep healthcare at home is a new research topic that needs to develop new sensors, hardware and algorithms with the consideration of convenience, portability and accuracy. Monitoring sleep behaviors by visual sensors represents one new unobtrusive approach to facilitating sleep monitoring and benefits sleep quality. The challenge of video surveillance for sleep behavior analysis is that we have to tackle bad image illumination issue and large pose variations during sleeping. This paper proposes a robust method for sleep pose analysis with human joints model. The method first tackles the illumination variation issue of infrared videos to improve the image quality and help better feature extraction. Image matching by keypoint features is proposed to detect and track the positions of human joints and build a human model robust to occlusion. Sleep poses are then inferred from joint positions by probabilistic reasoning in order to tolerate occluded joints. Experiments are conducted on the video polysomnography data recorded in sleep laboratory. Sleep pose experiments are given to examine the accuracy of joint detection and tacking, and the accuracy of sleep poses. High accuracy of the experiments demonstrates the validity of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3